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THEORY OF A PERIODIC LAMINAR BOUNDARY LAYER 

O. N. Bushmarin and V. V. Zyabrikov UDC 532.526.2 

A method is proposed for the analysis of a periodic laminar boundary layer, re- 
fining the conventional methods of Lin, Rayleigh, and Hill and Stenning and pro- 
viding a basis for the unification of those methods. 

Derivation of the Fundamental System of Equations. The equations for a periodic laminar 
boundary layer have the form 

Ou + u Ou + v Ou OU + u OU 02u 

at  ox ay  - o-7 + ' 0Y2 ( I ) 

Ou + Or_ = O, 
Ox Oy 

u - - O ;  v = O  at y = O ;  u-+U(x,  t) a8 y . - - ~ ;  

u =  f(y, t) at x--xy.  (2)  

The v e l o c i t y  a t  the  o u t e r  boundary  o f  the  boundary l a y e r  i s  given by the  e x p r e s s i o n  

U (x, t) = Uo (x) + W (x) cos (~or). 

The absence of a temporal boundary condition in the case of steady-state periodic motion 
renders it impossible, in principle, to solve the problem directly. This fact makes it 
necessary to adopt a specific representation of the time dependence of the functions u and v. 

We investigate the expansions of these functions in Fourier series, written in complex 
form: 

u = uo(x, g ) + ~  . @~_.u,(x, g)exp(si(ot), t 

i (3) 
v = vo (x, y) + Re . ~ v, (x, y) exp (si(ot). ] 

s=l 

Here Uo and Vo are unknown real functions, and u s and v s are unknown complex functions. The 
functions u and v can be represented by Fourier series, since they satisfy the sufficient 
conditions for expansion (periodicity with respect to time and differentiability at any point 
of the domain of definition); see the system (]) and the boundary conditions (2). Assuming 
sufficiently rapid convergence of the series (3), hereinafter we use segments thereof con- 
taining only two harmonics. We substitute these segments into the system (0), writing the 
velocity at the outer boundary of the boundary layer in the form U(x, t) = Uo(x) + Re[W(x). 
exp(imt)]. To take the operator Re for extraction of the real part outside the multiplica- 
tion sign, we invoke the formula 

1 Re (ziz~ + z ~ ) .  R o z l R e ~  ~ ~ 

The overbar is used everywhere to denote the complex conjugate, and zl and z2 denote arbi- 
trary complex numbers. After the appropriate calculations, the first equation of the system 
(1) can be written 

4 

~ R~[Np(uo, u~, u~, vo, ol, v2)exp(picot)] = 0 ,  (4) 
p=O 
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where Np denotes differential operators, the specific form of which will be given below. 
The latter sum consists of five terms in connection with the nonlinearity of the first equa- 
tion of the system (I). From (4) we deduce 

4 

[Re Np COS (p(o 0 -- Im N~ sin (/:~0] = O. 
~=0 

Making use of  the p r o p e r t y  of l i n e a r  independence of  the t r i g o n o m e t r i c  f u n c t i o n s ,  we 
ob ta in  

Re N 0 = 0 ,  N p = 0  ( p =  1 , . . . ,  4). (5) 

The second equa t ion  of  the system (1) i s  t r ans fo rmed  ana logous ly .  We go over to  dimen- 
s i o n l e s s  v a r i a b l e s  in the system (5) accord ing  to the  formulas  

x = L x ' ,  y = S y ' ,  y = 8 ~ ' ,  U o = U , . U ~ ,  l lz = I ~ . W ' ,  (6) 

�9 8 ' = w ~ u ~ ,  o , =  ~ " ( s = 1 , 2 )  Uo = Uo~uo, Vo = - ' ~  Uo~vo, u, T le~v, 

Here L is a certain length scale, and ~ = f~-L/Uom is a quantity characterizing the thickness 
of the steady-flow region. The index m refers to the maximum value of a function, and the 
prime to the dimensionless form. The scales Vo and Vs are determined by means of the equa- 
tion of continuity. 

A singular feature here is the introduction of a second scale with respect to the trans- 
verse coordinate, i.e., ~k = 2r It has been verified in several theoretical and experi- 
mental studies [2-4] that ~k is of the same order as the thickness of the region in which 
nonsteady motion in the boundary layer is concentrated. The introduction of ~k (which is 
aptly called the thickness of the vibrational boundary layer) is required in order to bring 
the quantities Vs, ~Us/3y , 32Us/~y ~ to dimensionless form. 

In dimensionless variables (we drop the prime from now on), the system (5) takes the 
form 

aUo . v OUo = Uo duo 02u~ 1 dlv 
~ . . o - ~  + o a y - - ~  + - ~ -  + - T  e v e  d---;- - 

. 

- ~- ~ u~--~- ~ -  , 

1 d~ui Jut - -  iW I Out -t- t~ ~ [ 117 dUo 

- -  Uo dlV . aui du o 1 ( au~ O~ + - -  + . ,  + ~ ~ + + 

O y '  

3. 1 OZuz 2iuz= ~ 1 Ou2 F au2 _ dUo 

1 ( dlV aui + @ut~ ] duo 
+ T o,g)]  + ,veo. 

auz + Out 0u2 au~ = O, 
4. ui -~-~x us d---~ q- o l ' - ~  q- vg--~ 

6 Ou.___o + Ovo = O, 
ax ay 

7,8. a u , +  a v , = o  ( s =  1,2). 
ax a~ 

(7) 
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The operators Np are written out in expanded form in this system. Also, the following 
notation is introduced: a = ~Uom/~L = I/S~ is a parameter of the problem, related to the 
Strouhal number, and ~ = Wm/Uom is a parameter characterizing the ratio of the velocities of 
the vibrational and steady-flow motions. 

The system (7) comprises the fundamental system of equations for the problem in ques- 
tion. It has the advantage over the system (I) of complete conditionality, insofar as the 
need for an initial condition is obviated (Us and v s do not depend on the time). However, 
it is impossible to obtain ar~ exact solution of the system (7) in the general case, because 
the number of equations in it is greater than the number of unknown functions. 

In the case ~ < 1 (Sh > I), the system (7), which contains terms with different powers 
of the parameter ~, admits approximate solution. But if a > 1 (Sh < I), then quasisteady- 
state methods are clearly applicable. 

Solution of" the Fundamental System of Equations in the Case Sh > I. We seek a solution 
of the system (7) in the form of series segments 

u _..co) +u~)~, ,,, o~o) + , / , )  = ~,  a ,  s -~  0 , 1 , 2 ,  ( 8 )  8 - - t 4 , $  

i.e., we investigate motions with Strouhal numbers such that terms of order a 2, ~z, etc., can 
be neglected. We substitute the e~pansions (8) into the system (7) and equate expressions 
for identical powers of a. This process "decomposes" the system into equations, each of 
which can be solved in succession. We note that if the result of solution of an equation in 
the succession is u(q) -= 0 (q = 0, I), then u(q) is not included in the subsequent equations. 

8 S 

Equating terms containing d ~ and then those containing al, we obtain [the fourth and 
fifth equations in the system (7) are not used; we will show later that they are satisfied 
identically ] 

1. 1 02u~ ~ 
' 2  0~" iui ~ = - -  iW, 

2. Wo o) aug~ ad~176 = u duo a~u~o o) . 
~ + d ~ ) - ~  o - - ~  + --aF- + 

+~ free a x l  air 21 i ~  (tdo)__gF_ ~176 

10~ul') 1 
3. - ~  -, a~ 2 iu ? ) = ~-~ v (o ~ ) 

4. ur ~ ~ au ~~ ) + u ~J ) --6Z-auC~176 + v ~ - - ~  au~~ ) 

+ v ~ ~  

aulO) 
a~ ' 

+ vCo ~ au? ~ 

(9) 

o~u(o n) 1 IB~Re (u~O) 0~?) - ay, ~ --6Z - +  u?~ + 

vco) a~? ~ .s,) a~  ~ '~ + , 

We rewrite the boundary conditions in the form u(q) = 0, v (q) = 0 for y = O; Uo(~ § I, 
S S 

u (~ § 1 for y § =; the remaining values are u (q) + 0 for y + ~; u = f(y, t) for x = xf. We 
I S 

bear in mind that the sixth through eighth equations of the system (7) are used to find the 
functions v (q). 

S 

The system (9) contains two types of equations. The first type includes the second and 
fourth in the system. They can be solved by the parametric method. The second equation has 
previously [5] been reduced to a universal form, i.e., in such a form that its solution does 
not require knowledge of the specific form of the functions Uo(x) and W(x). The first and 
third equations in the system (9) are of the second type. They can be treated as ordinary 
differential equations in the coordinate E with known right-hand sides. Hence, equations of 
the second type are universal in the stated sense. To find their particular solutions, it is 
useful to program the method of variation of arbitrary constants on a computer. The system 
(9) contains two more linear equations (which are emitted for brevity) admitting the trivial 
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Fig. I. Functions TI, T2, T3, T4 versus co- 
ordinate ~ = y/6 k (all quantities are dimen- 
sionless). 

solutions 

u~ ~ u~ 1~-0" (10) 

We have thus sho~n that the parametric method is applicable for the solution of all 
equations in the system (9). Using the expansions (3) and (8), we can readily construct u 
and v from the values obtained for u(q) and v(q). This completes the solution of the stated 

$ $ 
problem. All that remains now is to note that the solution so obtained for the system (9) 
also satisfies the unused fourth and fifth equations of the system (7); see Eq. (10). 

The foregoing scheme for the solution of the problem generalizes the conventional 
methods used for the analysis of a boundary layer. Thus, the first through the third equa- 
tions of the system (9), which replace the system when Sh § ~, are identical to the computa- 
tional scheme of the method of Lin [I]. If we put dW/dx - 0 in the system (9) written with 
the inclusion of terms of order eo, a:, and 2, we obtain the same computational scheme as 
in the method of Hill and Stenning [3]. 

Vibrations of a Cylinder in a Rest Fluid. As a simple example of the application of 
the proposed theory, we consider the vibrations of a cylinder in a fluid at rest. In this 
case, U = W(x)cos(wt). A singular aspect of this problem is the introduction of only one 
longitudinal velocity scale W m and one transverse-coordinate scale 6 k. With the exception 
of these changes, the scheme of the solution in this case is analogous to that described 
above. We now give certain results of analytical calculations, at first including terms of 
order a ~ a ~, and a2: 

U = Re [u]O)exp(io)t)] -6 l_.l_ Re [U(o2) + u(~ 2) exp(2io)t)], 
Sh~ 

u~O,= W[l--exp(--(1 +i)~)1, u~~ dlFdx Re[-- "--~-~ 

q_ 1 4  exp (--2~)q- (\2 sin~ -}- -~-1 cos~ ) exp (--~) -}- -~ (sin ~-- cos~) exp (-- ~ ) ] .  , (11) 

u~_.)=--~[---~exp(--v2(l+i)~)+ ~ _  exp ( - -  ( l + i ) t )  , 

coL 
S h k  . . . . . . . .  �9 

The remaining quantities u(q) -= 0. The final solution and initial equations exactly corre- 
s 

spond to the method of Rayleigh [2] (see also [6]). Our proposed method makes it possible to 
solve the problem more precisely and to include, for example, additional terms of order 
~3 and ~4. The refin~nent (additional term) of the longitudinal velocity has the form 

1 Uadd = ~ Re [u~ 4) exp(i(ot) q-u(3 4~ exp(3io)t)], 
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u~4)= --~ (IV ~)T~ (~)+ ( T2 (~), (12) 

Equations (If) and (12) are written in dimensionless form. The dependences of the functions 
T~, T2, Ta, T~ on the coordinate ~ are determined in the analytical solution of equations of 
the second type in a system analogous to (9) and are given in Fig. I. The functions TI and 
Ta obtained by consideration of the interaction of the steady flow with vibrations of fre- 
quency ~ are of decisive significance in the refinement. The second and higher harmonics of 
the longitudinal velocity are small in comparison with the first, and so the assumption of 
rapid convergence of the Fourier series (3) is justified. This conclusion can be extended 
to the general case in which U(x, t) = Uo(x) + W(x)cos(mt), since the order of the second and 
higher harmonics of u is determined solely by the function W(x); see the system (7). 

We now derive an expression for estimating the error of determination of the velocity u 
by the set of equations (II) and (12). Inasmuch as the values of the second and higher har- 
monics are at least an order of magnitude smaller than the values of the zeroth and first 
harmonics, the error is determined by the functions u(q) and u(q) (q = O, I, 2 .... ). We 

O I 

set the largest values of these functions equal to unity and sum the r~nainders of the series 
(8). Then 

Alul ~< Sh] (Sh~--l) (l 3) 

For  e x a m p l e ,  g i v e n  Sh k = 3,  t h e  e r r o r  Alu I ~ 5.6%, and t h e  r e f i n e m e n t  r e l a t i v e  t o  t h e  Ray-  
l e t g h  method  [ e x p r e s s i o n  ( l l ) ]  i s  e q u a l  t o  l l . l % .  

The i n c l u s i o n  o f  more  t e r m s  in  t h e  e x p a n s i o n s  (8) can be  r e a l i z e d  w i t h o u t  f u n d a m e n t a l  
d i f f i c u l t i e s  and i n c r e a s e s  t h e  p r e c i s i o n  o f  t h e  p r o p o s e d  method .  

NOTATION 

x, y, longitudinal and transverse coordinates in the boundary layer; u, v, projections 
of the velocity in the boundary layer onto the x and y axes, respectively; t, time; m, fre- 
quency of velocity oscillations at the outer boundary of the boundary layer; ~, kinematic 
viscosity coefficient; f(y, t), initial velocity profile in the boundary layer; Re, Im, real 
and imaginary parts of a complex number. 
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